.. NASA/CR-97- 206684

FINAL IN-51-CR OCIT-

SLS-2 Final Report (NAG2-500)

Experiment 141 047 877

REGULATION OF BLOOD VOLUME DURING SPACEFLIGHT

Principal Investigator:

Clarence P. Alfrey, M.D.

Baylor College of Medicine
Department of Medicine
The Methodist Hospital
6565 Fannin, Mail Station 902 Main Bldg.
Houston, Texas 77030
Telephone: (713) 790-2157
Fascimile: (713) 790-0828

Co-Investigators:

Mark M. Udden

Theda Driscoll

Mark Pickett

Baylor College of Medicine Houston, Texas

C-ASI.

PI: Clarence P. Alfrey, M.D. Grant #NAG2-500 Page 2

SUMMARY ABSTRACT

The effects of spaceflight on erythropoiesis and blood volume in the rat were studied during the 14-day NASA Spacelab Life Sciences 2 (SLS-2) Shuttle mission. Measurements included red blood cell mass (RBCM), plasma volume (PV), iron utilization and iron utilization in response to an injection of erythropoietin. Red blood cell (RBC) survival, splenic sequestration and erythrocyte morphology were also evaluated. At landing, the RBCM adjusted for body weight was significantly lower in the flight animals than in the ground controls. While the PV was also decreased, the change was not statistically significant. Incorporation of iron into circulating RBCs was normal when measured after five days of spaceflight and the rat responded normally to the single in-flight injection of erythropoietin. No change in RBC morphology could be attributed to spaceflight. A normal survival was found for the RBC population that was represented by ⁵¹Cr labeled RBCs. These results demonstrate that rats, like humans, return from spaceflight with a decreased RBCM and total blood volume.

!

Grant #NAG2-500

Page 3

OBJECTIVES

Human adaptation to microgravity during spaceflight is accompanied by a consistent loss of red blood cell mass (RBCM), plasma volume (PV) and total blood volume (4, 8, 16). The reduction in blood volume after exposure to microgravity has been attributed to the loss of gravity-dependent spaces below the level of the heart that are ordinarily present in an upright individual (15). The study of rats exposed to microgravity was undertaken to determine whether similar volume changes occurred in these animals.

INTRODUCTION

Reassessment of blood volume changes in rats subjected to spaceflight is complicated by the continued growth of the animal and the accompanying increase in RBCM and PV that occurs during the mission. Numerous studies of rats subjected to spaceflight have examined peripheral blood and bone marrow upon landing. The findings have been reported to indicate decreased erythropoiesis or no change (3, 5, 6, 7, 18). When our laboratory measured RBCM and PV directly using radionuclide dilution methods on the 9-day SLS-1 mission, a clearer picture emerged (17). Both the RBCM and PV of the flight animals were significantly decreased at the end of the mission compared to controls when adjusted for body weight (ml per 100g). ⁵⁹Fe incorporation into RBCs indicated there was decreased erythropoiesis in the flight animals throughout the 8-day post-flight observation period (17).

Here we report the results of a study of rats flown on the 14-day NASA Spacelab Life Sciences 2 Shuttle mission (SLS-2). In addition to pre- and post-flight determinations of RBCM and PV, this study included the first in-flight measurements of PV and assessment of erythropoiesis. These technically difficult experimental manipulations of rats, obtained under conditions of microgravity by the SLS-2 crew members, enabled us to address three important questions raised by earlier work: (1) Does plasma volume decrease significantly in the rat during spaceflight as it does in humans?; (2) Is there evidence for decreased erythropoiesis during spaceflight and (3) Does the bone marrow of the space-adapted rat have a normal response to exogenous erythropoietin, the principal regulating hormone of erythropoiesis?

PI: Clarence P. Alfrey, M.D. Grant #NAG2-500

Page 4

MATERIALS AND METHODS

Animals. Male, specific pathogen-free, Sprague-Dawley rats supplied by Taconic Laboratories (Indianapolis, IN) were flown on the shuttle Columbia during the SLS-2 mission (also designated STS-58). The experimental design was approved by the animal care and use committees of Baylor College of Medicine and the NASA Ames Research Center. The animals were handled in a humane manner under the supervision of a veterinarian and in accordance with national and international standards. A veterinarian also participated as a crew member during the 14-day flight.

The animals were housed in Florida at the Kennedy Space Center (KSC) vivarium facility for four weeks prior to launch. Fifteen animals were selected for spaceflight and 15 were selected to be ground controls. During the flight, the animals were housed in the Research Animal Holding Facility (RAHF). The RAHF provided automatic temperature and humidity control, a waste management system and food and water upon demand. Due to an in-flight adjustment of temperature control, the ambient temperature during the flight was 28 °C. The 15 ground control animals were maintained at a similar temperature in simulated RAHF cages. One day after launch, the controls were transferred by airplane to the shuttle landing site and housed at the Dryden Payload Receiving Facility (PRF), Edwards Air Force Base, California. Animals were housed in individual cages and were on an automatic 12/12 lighting cycle throughout the study.

Seven days prior to launch, both the flight and control animals underwent determinations of PV and RBCM by radionuclide dilution methods. On flight day six (FD6), one group of five animals received injections of ¹²⁵I-labeled albumin and ⁵⁹Fe-ferrous citrate. Samples were taken ten minutes later for PV determination and 24 hours later for determination of ⁵⁹Fe incorporation into RBCs. On FD9, the remaining 10 animals received an injection of ⁵⁹Fe. Half of these animals were given a 200U bolus of recombinant human erythropoietin (rhEPO), (Epogen, Amgen, Thousand Oaks, CA). The other half received a saline injection of the same volume. Procedures were performed concurrently on flight and ground control animals. On the day of landing, the following determinations were made for all flight and ground control animals: PV, RBCM, ⁵¹Cr spleen to liver ratio, ⁵¹Cr RBC survival, and percentage of ⁵⁹Fe incorporated into RBCs. The post-flight samples for these determinations were obtained 3 to 6 hours after landing. Animals were weighed daily during the pre-flight period, twice during the flight and upon return to earth.

Red blood cell mass and plasma volume determinations. Previously described radionuclide

PI: Clarence P. Alfrey, M.D. Grant #NAG2-500

Page 5

dilution methods were used to determine the RBCM and PV (13). Briefly, for each pre- and post-flight PV determination, 1 μ Ci of 125 I-labeled albumin in a volume of 0.1 ml was injected. 51 Cr-labeled RBCs were used for the RBCM determinations. Blood obtained by cardiocentesis from one or two donor rats was incubated with 51 Cr-sodium chromate and the RBCs were then washed and diluted with saline. The final concentration of 51 Cr was 5 μ Ci per 0.2 ml and the hematocrit was 55%. The radiolabels were injected at the same time in a volume of 0.3 ml and a blood sample was obtained 10 minute after the injection. For the in-flight PV determinations, 1 μ Ci of 125 I-labeled albumin in a volume of 0.4 ml was injected. Pediatric catheters were placed in the tail vein to obtain a background blood sample and make an injection (14). The post-injection blood sample was obtained with a second venipuncture in a contra-lateral tail vein. The volume of blood required was less than 0.3 ml for the background, the 10 minute sample and an aliquot provided to other investigators participating in this mission.

⁵⁹Fe incorporation into circulating red blood cells. Three μCi of ⁵⁹Fe-ferrous citrate in a volume of 0.4 ml was injected intravenously. Blood samples were obtained 24 hours after injection to determine the early incorporation rate and on landing day to determine the maximum amount incorporated. This maximum value was determined at 9 days after the FD6 injection and at 6 days after the FD9 injection. The values are expressed as the percentage of ⁵⁹Fe in total circulating RBCs, *i.e.*, net counts per minute (NCPM) per ml of RBCs times RBCM divided by NCPM ⁵⁹Fe injected. The RBCM determined on landing day was used in the maximum value calculation and the body mass was used to estimate RBCM for calculation of the 24 hour value. A linear change between pre-flight and post-flight values of RBCM per 100 grams body weight was assumed for the estimates of the in-flight RBCM values (1, 9).

In addition to the ⁵⁹Fe injection on FD9, half of the animals were scheduled to be injected IV with 200 units rhEPO and the other half with an equal volume of saline. On FD9, the in-flight injections proved to be technically difficult in two animals. Venous catheter placement was not achieved in one and a sub optimal injection was noted in the crew experiment log for a second animal. Subsequent measurement of iron incorporation confirmed the minimal administration of ⁵⁹Fe to that animal. Both of these animals were in the saline injection group, leaving this group with three animals instead of the five that was originally planned.

⁵¹Cr-labeled donor RBC survival and spleen sequestration. Because of the growth of the animals and the concomitant increase in RBCM, the estimate of RBC survival was based upon total

Grant #NAG2-500

Page 6

circulating 51 Cr, *i.e.*, NCPM per ml RBC times RBCM. This value was determined twice, once at the start of the study when the 51 Cr-labeled RBCs were injected 7 days pre-flight and again on landing day when a second RBCM was determined. On the basis of these two data points, the RBC survival $T_{1/2}$ was estimated in days.

On landing day, the liver and spleen were removed at dissection. The total organ weights were obtained, a tissue sample from each organ was weighed and the ⁵¹Cr activity of the sample was determined. The total organ ⁵¹Cr content was calculated (NCPM per gram times total organ weight in grams). The ratio of spleen to liver ⁵¹Cr radioactivity was calculated.

RBC morphology. A drop of blood from the tail vein venipuncture was added to 1.0 ml of 0.5% glutaraldehyde in phosphate buffered normal saline containing 1.13 mM calcium and 1.0 mM magnesium chloride buffer. Samples were obtained pre-, in- and post-flight. Later these were mounted wet on glass slides under cover slips and examined under light microscopy at 1000x magnification. One thousand cells were counted to determine the number of normal RBCs (discocytes) and spiculated cells (echinocytes).

<u>In-flight experiment equipment.</u> Procedures were carried out within the General Purpose Work Station (GPWS), a glove box designed for the Spacelab. Experimental supplies for blood sampling and injections were contained in special in-flight kits designed by the NASA Ames Research Center for use in microgravity. The Small Mass Measurement Instrument (SMMI) was used to determine rodent body mass.

Statistical methods. Data are expressed as means \pm SE for the ground control and the flight animals. Statistical analysis included the Repeated Measurements ANOVA, One Factor ANOVA and Bonferroni - Dunn test. A nonparametric statistical test, the Mann-Whitney U was applied when the number of observations per group was less than 5. Statistical significance was set at the $p \le 0.05$ level.

RESULTS AND DISCUSSION

Shown in Figure 1 are the growth curves for the flight and ground control animals. Below 150 grams the two groups had identical growth rates but for the remainder of the pre-flight period the control group gained weight at a slightly faster rate while during the mission the flight animals

PI: Clarence P. Alfrey, M.D. Grant #NAG2-500

Page 7

grew at a faster rate. The difference was not statistically significant during the pre-flight period but was during flight.

Shown in Figure 2 are the pre- and post-flight RBCM and PV results expressed as absolute volume (A, B) and as volume normalized for body weight (C, D). Rats injected with rhEPO were not included in the calculation of these means (n=10). The absolute volume of RBCM and PV increased due to the growth of the animals during the 21 days between measurements. The absolute RBCM measured in the flight animals on landing day was smaller than the control value. When RBCM was normalized for weight, there was a significant difference between the flight animals and the ground controls. No significant difference was found between the control and flight animals when the PV was expressed as an absolute volume or when normalized for body weight. Statistical analysis of the weight normalized total blood volume, *i.e.*, RBCM plus PV, showed that on the day of landing, the flight animal mean $(6.25 \pm .09 \text{ ml}/100 \text{ g})$ was significantly less than the control mean $(6.69 \pm .08 \text{ ml}/100 \text{ g})$.

Shown in Figure 3 are the mean PVs normalized for weight for the 5 flight and 5 ground control animals that had additional PV determinations on FD6 and 8 days post-flight. The flight group mean was smaller than the control mean at each determination but at no time was the difference significant.

⁵⁹Fe RBC incorporation values after the FD6 injection are shown in Figure 4. Mean values are shown for 24 hours and 9 days post-injection (landing day). There was no significant difference between the flight animals and the ground control animals and the values were within normal limits. Following the FD9 injection, ⁵⁹Fe incorporation values were within normal limits except for the 24 hour mean of the ground control animals injected with saline (Figure 5). This mean was statistically less than the other 24 hour values of this study and our normal values when identical methods were used to determine RBC incorporation of iron during ground based flight experiment verification tests. In one ground based study the 24 hour mean \pm SE was $37 \pm 1\%$ for 5 animals injected with saline and $44 \pm 4\%$ for 5 animals injected with rhEPO. As indicated in Figure 5, the 24 hour mean value for flight animals injected with rhEPO was significantly greater than the mean for flight animals injected with saline. The mean values on the sixth day post-injection (landing day) were normal and there was no difference between groups.

The survival of RBCs labeled with 51Cr 7 days prior to launch was not affected by spaceflight.

Grant #NAG2-500

Page 8

The mean \pm SE of the T_{1/2} was 19.6 \pm 1.3 days for the ground controls and 20.3 \pm 1.0 days for the flight animals. There was no increased splenic sequestration of these cells. The mean \pm SE of the ⁵¹Cr spleen to liver ratio was 1.5 \pm 0.2 for the controls and 1.6 \pm 0.2 for the flight animals.

No change relative to spaceflight was found in the number of echinocytes or other non-discocytes (Data not shown). There was considerable daily variability in the proportions of these cells in both the flight and ground control animals.

At the end of this 14-day mission, RBCM normalized for body weight was significantly decreased in the flight animals compared to ground controls and these results confirm our findings for the 14 rats that flew on the 9-day SLS-1 mission (17). While PV normalized for the weight of the animal showed no statistically significant flight-related difference, the changes were in the same direction as the significantly decreased PV that was found for the rats that flew on the SLS-1 mission (17). The absence of a significant change in PV after 6 days of spaceflight indicates that the decrease in total blood volume of the rat is not accompanied by the same marked reduction in PV that is seen when humans adapt to microgravity (16).

Erythropoiesis was evaluated by measuring the incorporation of radiolabeled iron into circulating RBCs during exposure to microgravity. In-flight ⁵⁹Fe studies on FD6 and FD9 indicate that utilization of iron by the bone marrow was at the same level as in ground based studies of normal rats. A 24-hour RBC incorporation rate of about 40% and a maximum plateau between 65 and 75% by three days post-injection have been reported (2, 9, 12). We have no explanation for the low 24-hour mean value of 29% that was found for the ground control group after the FD9 injection. An increased 24-hour incorporation rate in response to the injection of rhEPO demonstrates that erythropoiesis is stimulated normally by this hormone under conditions of microgravity. These results are consistent with the presence of a marrow that is actively using iron and releasing ⁵⁹Fe-labeled RBCs into the circulation at a normal rate.

This was the first time that erythropoiesis in the rat has been studied in-flight. The bone marrow of rats flown aboard Cosmos biosatellite missions of 5 to 22 days duration has been studied post-flight and evidence of decreased erythropoiesis has been reported (3, 5, 18). When bone marrow cells were cultured *in vitro* with EPO after the SL-3 mission, there were increases in the number of BFU-e and CFU-e colonies in flight animals (6) while results from SLS-1 showed a decrease in the number of these colonies (17). Also, iron utilization by RBCs was decreased throughout an 8-

Grant #NAG2-500

Page 9

day post-flight period (17). These reported post-flight changes may have been affected by the stress associated with re-entry and landing since studies reported here indicate a normal marrow from the 6th day of spaceflight to the end of the mission.

A RBC precursor, ¹⁴C-glycine, was used to study rats flown on two 19-day Cosmos biosatellite missions. The findings indicted accelerated hemolysis during some portion of the mission and a shortened RBC life-span was reported (10, 11). We found no change in RBC survival or splenic sequestration of ⁵¹Cr-labeled RBCs during this mission or the SLS-1 mission (17). The spleen to liver ratio reflects the cumulative deposition of all ⁵¹Cr-labeled RBCs that were removed from circulation from the pre-flight injection day to landing day. If the survival of ⁵¹Cr-labeled RBCs had been shortened by exposure to microgravity, then the spleen to liver ratio would have been larger in the flight animals. RBCs that were produced after the injection of the labeled RBCs were not represented in our ⁵¹Cr survival measurements. The survival of this small sub-population of young cells can not be ascertained from our studies.

CONCLUSIONS

Our results demonstrate that rats, like humans, return from spaceflight with a RBCM and total blood volume that is less than it would have been if they had remained on earth. The absence of a significant change in PV during the mission indicates that the regulation of total blood volume in the rat is not the same as it is in humans.

Grant #NAG2-500

Page 10

REFERENCES

- 1. Fernandez L A, Rettori O, Mejia RH. Correlation between body fluid volumes and body weight in the rat. Am. J. Physiol. 1966; 210:877-879.
- 2. Garcia, JF. Radioiron time-distribution studies at various ages in the normal male rat. Am. J. Physiol. 1957; 190:31-36.
- 3. Gazenko OG, Genin AM, Ilyin EA, Oganov VS, Serova LV. Adaptation to weightlessness and its physiological mechanisms. Physiologist. 1980; 23(Suppl.):S11-15.
- 4. Huntoon CL, Whitson PA, Sam CF. Hematologic and immunologic function. In: Nicogossian A.E, Huntoon, CL, Pool AL, ed. Space Physiology and Medicine. Lea & Febiger, Philadelphia, 1994: 351-362.
- 5. Ilyin EA, Serova LV, Portugalov VV, Tigranyan RA, Savina EA, Gayevskaya MS, Kondratyev YI, Noskin AD, Milyavsky VI, Yurov BN. Preliminary results of examinations of rats after a 22-day flight aboard the Cosmos-605 biosatellite. Aviat. Space Environ. Med. 1975; 46:319-321.
- 6. Lange RD, Andrews RB, Gibson LA, Congdon CC, Wright P, Dunn CD, Jones JB. Hematological measurements in rats flown on Spacelab shuttle, SL-3. Am J Physiol. 1987; 252:R216-221.
- 7. Lange RD, Gibson LA, Driscoll TB, Allebban Z, Ichike AT. Effects of microgravity and increased gravity on bone marrow of rats. Aviat. Space Environ. Med. 1994; 65:730-735.
- 8. Leach CS, Johnson PC. Influence of spaceflight on erythrokinetics in man. Science. 1984; 225:216-218.
- 9. Lee HB, Blaufox MD. Blood volume in the rat. J.Nucl. Med. 1985; 25:72-76.
- 10. Leon AL, Serova LV, Cummins J, Landaw SA. Alterations in erythrocyte survival parameters in rats after 19.5 days aboard Cosmos 782. Aviat. Space Environ. Med. 1978; 49:66-69.
- 11. Leon AL, Serova LV, Landaw SA. Effect of weightlessness and centrifugation on red cell survival in rats subjected to spaceflight. Aviat. Space Environ. Med. 1980; 51:1091-1094.
- 12. Lombardi MH, Ray GA. Microtechnique for the study of ferro- and erythrokinetics in the rat. AM. J. Vet. Res. 1973; 34:253-259.
- 13. Nachtman RG, Dunn CDR, Driscoll TB, Leach CS. Methods for repetitive measurements of multiple hematological parameters in individual rats. Lab Animal Sci. 1985; 35:505-508.

Grant #NAG2-500

Page 11

14. Nachtman RG, Driscoll TB, Gibson LA, Johnson PC. Commercial over-the-needle catheters for intravenous injections and blood sampling in rats. Lab Animal Sci. 1988; 38:629-630.

- 15. Thorton WE, Hoffler GW, Rummel JA. Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF, Berry CA, ed. Biomedical Results From Skylab. 1977: NASA SP-377; 330-338.
- 16. Udden MM, Driscoll TB, Pickett MH, Leach-Huntoon CS, Alfrey CP. Decreased production of red blood cells in human subjects exposed to microgravity. J. Lab. Clin. Med. 1995; 125:442-449.
- 17. Udden MM, Driscoll TB, Gibson LA, Patton CS, Pickett MH, Jones JB, Nachtman R, Allebban A, Ichike AT, Lange RD, Alfrey CP. Blood volume and erythropoiesis in the rat during spaceflight. Aviat. Space Environ. Med. 1995; 66:557-61.
- 18. Vacek A, Tkadlecek L, Shgvets VN, Bartonickova A, Viklicka S, Rotovska D, Serova LV, Michurinal TV. Space flight effects on haemopoietic stem cells of the bone marrow of rats. Cell Tissue Kinet. 1982;15:643-649.

Grant #NAG2-500

Page 12

FIGURE LEGENDS

Figure 1. Growth curves for animals from 22 days prior to launch through landing day (R+0). Values are Mean \pm SE; n = 10. During the mission and on landing day there was a significant difference between the flight means and the ground control means as shown by Repeated Measurements ANOVA and Bonferroni - Dunn test with p \leq 0.05.

Figure 2. A. RBCM as absolute volume; B. PV as absolute volume; C. RBCM normalized for body weight; D. PV normalized for body weight. Values are Mean \pm SE; n = 10. The (*) indicates a significant difference between the flight mean and the ground control mean as shown by Repeated Measurements ANOVA and Bonferroni - Dunn test with $p \le 0.05$.

Figure 3. Plasma volume normalized for body weight. Values are Mean \pm SE; n = 5. Repeated Measurements ANOVA showed no significant difference related to spaceflight.

Figure 4. Percentage 59 Fe incorporated into total circulating RBCs after FD6 injection. Values are Mean \pm SE; n = 5. Values for both groups at 24 hours and 9 days were within the normal range and no difference was found between ground control and flight animals.

Figure 5. Percentage ⁵⁹Fe incorporated into total circulating RBCs after FD9 injection. Values are Mean \pm SE; n = 5 (exception n=3 for saline injected flight animals). The (*) indicates a significant difference between the 24-hour ground control mean and all other 24-hour means as shown by One Factor ANOVA and Bonferroni - Dunn test with p \leq 0.05. The (**) indicates a significant difference between the EPO injected and saline injected flight animals at 24 hours as shown by the Mann-Whitney U test with p \leq 0.05.

Figure 1

Figure 2

PI: Clarence P. Alfrey, M.D. Grant #NAG2-500 Page 15

Figure 3

Time Post-FD6 Injection

Figure 4

Time Post-FD9 Injection

Figure 5

Body Mass On Days When Radionuclide Measurements Were Made grams

		FL	IGHT .	ANIMA	LS		GROUND CONTROL ANIMALS						
	I.D.	L-7	FD6	FD10	R+0	R+8		I.D.	L-7	FD6	FD10	R+0	R+8
Group 1	14	228	316	353	346	327		20	231	315	327	357	385
•	76	228	326	328	348	350		66	223	272	265	252	294
	13	206	290	298	313	321		72	209	290	286	302	323
	18	211	297	320	330	338		17	239	253	282	321	363
	24	211	305	330	347	343		16	230	278	297	316	371
Group 2	28	227	320	355	371			73	228	286	295	317	
•	29	203	270	276	281			74	222	263	269	301	
	58	243	318	348	365			54	233	275	313	341	
	3	211	286	308	314			59	231	291	298	313	
	83	225	276	297	316			62	230	275	280	294	
Group 3	27	237	337	356	373			2	234	285	313	351	
	30	209	300	328	347			10	239	320	344	382	
	51	235	327	349	367			53	215	286	301	313	
	68	222	294	319	333			57	233	297	325	355	
	81	230	323	345	359			61	236	308	319	345	
Group 1	Mean	217	307	326	337	336			227	281	291	309	347
	SE	5	7	9	7	5			5	10	10	17	17
Group 2	Mean	222	294	317	329				229	278	291	313	
	SE	7	11	15	17				2	5	8	8	
Group 3	Mean	227	316	339	356				232	299	320	349	
0-05p	SE	5	8	7	7				4	7	7	11	
Group 1, 2, 3	Mean	222	306	327	341				229	286	301	324	
Group x, m, o	SE	3	5	6	7				2	5	6	8	
Group 1, 2	Mean	219	301	321	333				228	280	291	311	
Orvup 1, 2		4	6	8	9				3	5	6	9	
Group 1 Group 2	SE 125-I A 59-Fe a	4 Albumi	6 in and 5 ine inje	8 59-Fe in	jection i FD9	on FD6		Sal	ine dilt ine dilt	itent -	total vo	olume i olume i	njecte
Group 3	59-Fe	and EF	O injec	ction on	FD9			Sal	ine dilu	itent -	total vo	olume i	njected

PLASMA VOLUME milliters

		FLIG	HT ANIN	MALS		GROUND CONTROL ANIMAI							
	I.D.	L-7	FD6	R+0	R+8	I.D.	L-7	FD6	R+0	R+8			
Group 1	14	10.80	11.37	13.20	9.85	20	10.99	13.22	15.20	13.56			
F	76	9.50	7.92	12.60	12.00	66	9.75	8.92	10.10	9.40			
	13	9.76	12.09	13.80	9.79	72	10.94	10.10	12.30	11.15			
	18	9.62	11.09	11.90	10.44	17	11.59	7.96	13.40	12.43			
	24	9.14	11.81	13.30	10.36	16	9.85	10.87	13.60	12.10			
Group 2	28	9.87		15.80		73	9.97		12.10				
•	29	8.54		11.60		74	9.39		13.40				
	58	11.24		13.80		54	10.97		14.60				
	3	9.34		13.10		59	9.82		11.70				
	83	9.57		12.50		62	9.81		11.40				
Group 3	27	-		14.10		2	10.87		14.20				
•	30	8.74		12.60		10	11.05		14.50				
	51	10.84		14.40		53	10.27		12.50				
	68	10.10		14.20		57	9.86		14.40				
	81	10.07	-	13.30		61	10.69		14.30				
Group 1	Mean	9.76	10.86	12.96	10.49		10.62	10.21	12.92	11.73			
•	SE	0.28	0.75	0.33	0.40		0.36	0.90	0.84	0.70			
Group 2	Mean	9.71		13.36			9.99		12.64				
0.5mp -	SE	0.44		0.71			0.26		0.60				
Group 3	Mean	9.94		13.72			10.55		13.98				
Oroup t	SE	0.44		0.34			0.22		0.37				
Group 1, 2, 3	Mean	9.80		13.35			10.39		13.18				
Group 1, 2, 3	SE	0.21		0.28			0.17		0.37				
Group 1, 2	Mean	9.74		13.16			10.31		12.78				
Group 1, 2	SE	0.25		0.37			0.23		0.49				
Group 1 Group 2			l 59-Fe in ijection or	jection on FD9	FD6	Saline dilute Saline dilute							
Group 3			ection on			Saline dilute							

PLASMA VOLUME ml per 100 g body weight

		FLIG	HT ANIN	IALS		GROUND CONTROL ANIMALS							
	I.D.	L-7	FD6	R+0	R+8	I.D.	Pre	FD6	Landing	R+8			
Group 1	14	4.74	3.60	3.82	3.52	20	4.76	4.20	4.26	3.01			
•	76	4.17	2.42	3.62	3.20	66	4.37	3.28	4.00	3.43			
	13	4.74	4.17	4.39	3.45	72	5.23	3.48	4.08	3.05			
	18	4.56	3.73	3.59	3.42	17	4.85	3.15	4.17	3.09			
	24	4.33	3.87	3.82	3.26	16	4.28	3.91	4.29	3.02			
Group 2	28	4.35		4.26		73	4.37		3.81				
•	29	4.21		4.11		74	4.23		4.46				
	58	4.62		3.78		54	4.71		4.27				
	3	4.43		4.17		59	4.25		3.74				
	83	4.25		3.95		62	4.26		3.90				
Group 3	27			3.78		2	4.65		4.06				
•	30	4.18		3.65		10	4.62		3.79				
	51	4.61		3.91		53	4.78		4.00				
	68	4.55		4.26		57	4.23		4.05				
	81	4.38		3.70		61	4.53		4.14				
Group 1		4.51	3.56	3.85	3.37		4.70	3.60	4.16	3.12			
Or oup 1		0.11	0.30	0.14	0.06		0.17	0.20	0.05	0.08			
Group 2		4.37		4.05			4.36		4.04				
Group 2		0.07		0.09			0.09		0.14				
C 1		4.43		3.86			4.56		4.01				
Group 3		0.10		0.11			0.09		0.06				
G 122		4.44		3.92			4.54		4.07				
Group 1, 2, 3		0.05		0.07			0.08		0.05				
				3.95			4.53		4.10				
Group 1, 2,		4.44 0.07		0.09			0.11		0.07				
Group 1 Group 2 Group 3	59-Fe a	lbumin an nd saline i nd EPO in	njection o	n FD9	FD6	Saline dilute Saline dilute Saline dilute	nt - tota	l volume	injected 1.2	ml			

RED BLOOD CELL MASS milliliters

	FLI	GHT ANIMA	LS	GROUND	CONTROL A	NIMALS
	I.D.	L-7	R+0	I.D.	L-7	R+0
Group 1	14	5.98	8.59	20	5.30	8.65
0.0-F	76	5.35	8.64	66	5.47	6.99
	13	5.15	6.87	72	5.38	7.62
	18	4.92	7.89	17	5.58	7.33
	24	5.56	7.00	16	5.68	7.14
Group 2	28	5.27	8.80	73	5.39	8.40
0111 -F -	29	5.07	6.39	74	5.28	8.55
	58	5.61	7.54	54	5.52	9.88
	3	4.94	7.43	59	5.14	9.66
	83	5.99	7.21	62	5.47	7.44
Group 3	27		9.79	2	5.64	8.58
G. Gap C	30	4.73	6.85	10	5.44	9.14
	51	5.99	8.23	53	5.49	11.78
	68	5.47	8.03	57	5.67	8.70
	81	5.40	9.30	61	6.34	9.94
Group 1	Mean	5.39	7.80	Mean	5.48	7.55
	SE	0.18	0.38	SE	0.07	0.30
Group 2	Mean	5.38	7.47	Mean	5.36	8.79
-	SE	0.19	0.39	SE	0.07	0.45
Group 3	Mean	5.40	8.44	Mean	5.72	9.63
•	SE	0.26	0.51	SE	0.16	0.59
Group 1, 2, 3	Mean	5.39	7.90	Mean	5.52	8.65
• / /	SE	0.11	0.25	SE	0.07	0.34
Group 1, 2	Mean	5.38	7.64	Mean	5.42	8.17
	SE	0.12	0.26	SE	0.05	0.33
				C. P 4D. A A - A - A - A - A - A - A - A - A	huma inicated 1	2 ml
Group !		n and 59-Fe inj		Saline dilutent - total vol Saline dilutent - total vol		
Group 2	59-Fe and sali					
Group 3	59-Fe and EP	O injection on l	FD9	Saline dilutent - total vol	iume injected i	1.2 HH

RED BLOOD CELL MASS milliliters per 100 grams body weight

	FLI	GHT ANIMA	LS	GROUND CONTROL ANIMAL								
	I.D.	L-7	R+0	I.D.	L-7	R+0						
Group 1	14	2.62	2.48	20	2.29	2.42						
•	76	2.35	2.48	66	2.46	2.77						
	13	2.50	2.20	72	2.58	2.52						
	18	2.33	2.39	17	2.33	2.28						
	24	2.63	2.02	16	2.47	2.26						
Group 2	28	2.32	2.37	73	2.37	2.65						
-	29	2.50	2.28	74	2.38	2.84						
	58	2.31	2.06	54	2.37	2.90						
	3	2.34	2.37	59	2.22	3.09						
	83	2.66	2.28	62	2.38	2.53						
Group 3	27		2.62	2	2.41	2.45						
-	30	2.26	1.97	10	2.28	2.39						
	51	2.55	2.27	53	2.56	3.76						
	68	2.46	2.41	57	2.44	2.45						
	81	2.35	2.59	61	2.69	2.88						
Group 1	Mean	2.49	2.31	Mean	2.43	2.45						
•	SE	0.06	0.09	SE	0.05	0.09						
Group 2	Mean	2.43	2.27	Mean	2.34	2.80						
F	SE	0.07	0.06	SE	0.03	0.10						
Group 3	Меап	2.41	2.37	Mean	2.48	2.79						
O. Oup C	SE	0.06	0.12	SE	0.07	0.26						
Group 1, 2, 3	Mean	2.44	2.32	Mean	2.42	2.68						
0.0up 1, 2, 5	SE	0.04	0.05	SE	0.03	0.10						
Group 1,2	Mean	2.46	2.29	Mean	2.39	2.63						
310ap 1,2	SE	0.05	0.05	SE	0.03	0.09						
Group 1	125-I Albumir	and 59-Fe ini	ection on FD6	Saline dilutent - total vol	ume injected 1	.2 ml						
Group 2	59-Fe and salis			Saline dilutent - total vol								
Group 3	59-Fe and EPC	•		Saline dilutent - total vol								
Group 3	J, I Cana Di		-		-							

BLOOD VOLUME milliliters

	FLI	IGHT ANIMA	ALS	GROUND	CONTROL A	NIMALS
	I.D.	L-7	R+0	I.D.	L-7	R+0
Group 1	14	16.78	20.65	20	16.29	22.06
•	76	14.85	20.59	66	15.22	16.05
	13	14.91	18.83	72	16.32	18.87
	18	14.54	18.44	17	17.17	19.56
	24	14.70	18.91	16	15.53	19.23
Group 2	28	15.14	22.79	73	15.36	19.40
-	29	13.61	16.76	74	14.67	20.75
	58	16.85	20.08	54	16.49	23.00
	3	14.28	19.01	59	14.96	20.12
	83	15.56	18.27	62	15.28	17.47
Group 3	27		22.64	2	16.52	21.19
•	30	13.47	18.31	10	16.49	22.21
	51	16.83	20.97	53	15.76	23.11
	68	15.57	20.36	57	15.53	22.00
	81	15.47	20.62	61	17.03	23.20
Group 1	Mean	15.16	19.48	Mean	16.11	19.15
	SE	0.41	0.47	SE	0.34	0.96
Group 2	Mean	15.09	19.38	Mean	15.35	20.15
-	SE	0.56	1.01	SE	0.31	0.90
Group 3	Mean	15.34	20.58	Mean	16.27	22.34
-	SE	0.69	0.69	SE	0.27	0.37
Group 1, 2, 3	Mean	15.18	19.82	Mean	15.91	20.55
• • •	SE	0.29	0.43	SE	0.20	0.55
Group 1, 2	Mean	15.12	19.43	Mean	15.73	19.65
• /	SE	0.33	0.53	SE	0.25	0.64
Grove 1	125 I Albumia	n and 59-Fe inj	ection on FD6	Saline dilutent - total vo.	lume injected l	.2 ml
Group 1 Group 2		ne injection on		Saline dilutent - total vo		
-		ne injection on l O injection on l		Saline dilutent - total vo		
Group 3	22-1.6 and EL	o mjecuou ou i		Saimo misioni iomi vo		

BLOOD VOLUME milliliters PER 100 gram body mass

	FLI	GHT ANIMA	als	GROUND CONTROL AN							
	I.D.	L-7	R+0	I.D.	L-7	R+0					
Group 1	14	7.36	5.97	20	7.05	6.18					
•	76	6.51	5.92	66	6.83	6.37					
	13	7.24	6.02	72	7.81	6.25					
	18	6.89	5.59	17	7.18	6.09					
	24	6.97	5.45	16	6.75	6.09					
Group 2	28	6.67	6.14	73	6.74	6.12					
•	. 29	6.70	5.96	74	6.61	6.89					
	58	6.93	5.50	54	7.08	6.74					
	3	6.77	6.05	59	6.48	6.43					
	83	6.92	5.78	62	6.64	5.94					
Group 3	27	-	6.07	2	7.06	6.04					
•	30	6.44	5.28	10	6.90	5.81					
	51	7.16	5.71	53	7.33	7.38					
	68	7.01	6.11	57	6.67	6.20					
	81	6.73	5.74	61	7.22	6.72					
Group 1	Mean	6.99	5.79	Mean	7.12	6.20					
•	SE	0.15	0.11	SE	0.19	0.05					
Group 2	Mean	6.80	5.89	Mean	6.71	6.43					
-	SE	0.05	0.11	SE	0.10	0.18					
Group 3	Mean	6.84	5.78	Mean	7.03	6.43					
·	SE	0.16	0.15	SE	0.12	0.28					
Group 1, 2, 3	Mean	6.88	5.82	Mean	6.96	6.35					
• • •	SE	0.07	0.07	SE	0.09	0.11					
Group 1, 2	Mean	6.90	5.84	Mean	6.92	6.31					
	SE	0.08	0.08	SE	0.12	0.10					
Grove 1	125 I Albumin	ı and 59-Fe inj	ection on FD6	Saline dilutent - total vol	ume iniected l	.2 ml					
Group 1	59-Fe and sali			Saline dilutent - total vol							
Group 2	59-Fe and EPC	•		Saline dilutent - total vol							
Group 3	23-1.c and ELC	y mleynon on i		Carmio and controlled							

	Children Court sections Court with the court of the court		
		1	į
		Į Ž	
	1	>	
	(=	נ נ
	,	>	
		7	
ı		j	
		2	
		7	
			_
		•	

		•				1	FLIGH	FLIGHT ANIMALS	MALS									
Day		L-7	7	9-1	FD6		FD7	FD9	FD10	FD14	-	R+0	R+2	R+4	R+6	-	R+8	
Blood Sample		_	2	<u>-</u>	_	2		<u></u>			<u> </u>	2					, <u>,</u>	2
Duplication		1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2		$\frac{2}{1}$	2	1 2
	I.D.										3	2	3	7	5	<u> </u>	5	77 77
Group 1	14				ú	70			•		, ;	3		֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	5		3	
	76	48 50	44 45	44 45	59 62 5	58 58 '	49 49			50 51	ö	4	24	22	49		: 0	
	13	44 44	44 45	42 43	46 46 ,	43 43	40 40			44 46	48 49	45		47	48		51	
	18	44 44	44 45	45 44	49 49	47 49	49 50			56 57	1 49 49	50	50	50	56		53	
	24	47 46	48 47	53 52	51 51 '	49 50	49 49			54 54	1 51 50	46	54	55 52 5	52 60	60 57	× ×	39 00
Group 2	28	45 46	44 44	43 44		_		50 49	48 48		51 52	48	50					
	29	45 44	46 46	45 45				*	46 46			45	46					
	58	45 45	42 42	43 43				50 50	47			46	46					
	w	43 44	45 45	42 41				48 48	52			47	48					
	83	44 45	45 47	44 45					51			49	*					
Group 3	27	46 46	47 46	44 45		_ =		53 56	50			49	48		_			
	30	47 48	46 45	51 51				48 48	48			5	48	·				
	51	47 47	45 44	42 43				50 51	55			49	49					
	%	46 46	44 44	42 41		_		52 52	50			48	49					
	81	48 46	43 43	43 44				50 50) 53 52		47 5	50 51 :	50					
Group 1	Mean	46.3	45.0	45.5	51.9	49.9	47.3			51.6			3 52.6	5 50.3			54.6	55.3
	SE	1.0	0.6	1.8	2.4	2.4	1.8			1.9	1.4	0.9	=	1.0	2.2	2	1.7	1.5
•) h		-		40 %	à 0 0		 5 0	47 2		Groups 1 125-I Albumin&59-Fe injection FD6	min&5	9-Fe i	niectio	m FD6
Ci oub	SE	0.3	0.7	0.6				0.5	1.2		0.4			2. 59-Fe and saline injection FD9	saline i	njectic	m FD9	ę
	Š								-				3. 59	3. 59-Fe and EPO injection FD9	EPO in	jection	ı FD9	
Group 3	Mean	46.7	44.7	44.6				50.3	51.4		49.7			saline di	lutent -	total v	/olum	Saline dilutent - total volume 1.2 ml
•	SE	0.4	0.6	1.7				1.1	1.2	_	0.6	0.6						
													Two	Two blod sample days	mple da	ıys		
Group 1,2,3	Mean	45.9	44.8	44.5			-				50.4	4 48.1		10 n	10 minutes between samples	betwee	en san	ıples
,	SE	0.4	0.4	0.8							0.5	0.4		l. With	Withdrawn through Catheter	hrough	1 Cath	eter
														Withdrawn through needle	drawn (hrough	ı need	le
Group 1,2	Mean	45.5	44.8	44.9							50.8	8 47.8		Single blood sample days	sample	days		
•	SE	0.6	0.5	1.0							0.7	0.6	5	with	withdrawn through needle	throug	h neec	lle

CENTRIFUGED HEMATOCRIT EXPRESSED AS PERCENTAGE GROUND CONTROL ANIMALS

Group 1,2		Group 1,2,3			Group 3			Group 2		Group 1					Group 3					Group 2				ı	Group 1		Duplication	Blood Sample	Day	
Mean SE	SE	Mean		SE	Mean		SE	Mean	SE	Mean	61	57	33	10	2	62	59	2	74	73	16	17	72	S	20	I.D.				
46.0 1.2	0.8	46.4		0.7	47.1		1.5	45.4	2.1	46.6	47 47	49 48	50 47	44 45	47 47	47 46	45 45	41 40	49 50	45 46	53 54	42 42	44 44	50 49	44 44		1 2	_	L-7	
44.2 0.9	0,6	44.5		0.6	45.1		1.4	45.0	1.2	43.2	45 46	45 45	45 46	43 43	46 47	44 45	43 43	42 40	49 48	48 48	47 48	42 42	41 42	45 SA	41 41		1 2	2	.7	
45.1 1.5	1.0	43.7		0.9	42.1	•	2.7	46.5	0.6	42.5	45 45	41 40	41 42	40 40	44 43	54 54	41 40	43 44	43 42	52 52	43 43	40 41	43 43	44 44	42 42		1 2	<u></u>	1-6	
									1.9	51.8											51 *	55 55	54 55	54 *	45 45		1 2		FD6	
									2.1	48.9											44 44	53 53	49 50	54 54	44 44		1 2	2	<u>~</u>	GRO
	,								1.6	49.7											46 47	46 47	53 53	54 54	49 48		1 2	1	FD7	GROUND COINT NOT AINTINESS
				1.0	53.7		1.2	53.3			55 55	51 51	56 55	51 51	55 55	55 55	52 52	49 49	55 56	55 55							1 2	_	FD9	NINO
				1.4	53.5		1.3	51.9			59 59	54 55	51 51	53 52	55 55	53 53	56 56	48 49	50 50	52 52							1 2	-	FD10	T AININ
									1.1	54.4											53 53	53 53	58 59	55 54	53 53		1 2	_	FD14	1/XLO
0.9	<u>.</u>	52.4		0.6	53.7		0.8	51.3	1.8	52.2	54 55	55 55	54 54	52 52	52 *	54 54	51 50	50 50	50 50	53 *	50 49	50 49	52 52	59 59	51 51		1 2	—	R+0	
0.8	0.6	49.4	;	0.6	50.1		1.0	49.3	1.4	48.8	50 50	50 50	52 52	48 49	50 50	51 52	50 51	48 47	46 47	50 51	46 47	46 47	48 50	54 54	48 48		1 2	2	<u> </u>	
Single	2:		Two bl		Sal	3. 59-F	2. 59-F	Groups 1. 125-	1.2	51.1											48 48	52 52	52 53	54 55	48 49		1 2		R+2	
Single blood sample days withdrawn throug	Withdra	10 min	Two blod sample days		ine dilut	e and EP	e and sal	Albumi	1.3	52.2											52 52	54 53	52 51	56 56	48 48		1 2		R+4	
mple day	wn throu	utes betv	le days		ent - tota	O inject	ine injec	n&59-F	0.8	51.1			,								50 50	48 49	51 53	53 53	52 52		1 2	1	R+6	
lood sample days withdrawn through needle	 Withdrawn through needle 	10 minutes between samples			Saline dilutent - total volume 1.2 ml	3. 59-Fe and EPO injection FD9	2. 59-Fe and saline injection FD9	Groups 1. 125-I Albumin&59-Fe injection FD6	1.3	50.3											51 51	46 48	54 54	52 52	47 48		1 2	-	R+8	
lle	leter	nples	•		e 1.2 ml		9	on FD6	1.3	49.3											47 47	47 47		53 54	47 48	; 	1 2	12	_ ∞	

Total Body Hematocrit Percentage

	FLI	GHT ANIMA	LS	GROUND	CONTROL A	L ANIMALS				
	I.D.	L-7	R+0	I.D.	L-7	R+0				
Group 1	14	35.6	42.2	20	32.5	40.1				
•	76	36.0	44.0	66	35.9	44.4				
	13	34.5	37.2	72	33.0	41.0				
	18	33.8	42.4	17	32.5	38.2				
	24	37.8	37.8	16	36.6	37.8				
Group 2	28	34.8	39.3	73	35.1	44.0				
-	29	37.3	39.0	74	36.0	42.4				
	58	33.3	38.6	54	33.5	43.8				
	3	34.6	39.6	59	34.4	47.9				
	83	38.5	39.3	62	35.8	43.1				
Group 3	27		43.5	2	34.2	41.0				
•	30	35.1	38.0	10	33.0	42.3				
	51	35.6	40.3	53	34.8	51.8				
	68	35.1	39.4	57	36.5	40.9				
	81	34.9	44.2	61	_ 37.2	44.3				
Group 1	Mean	35.6	40.7	Mean	34.1	40.3				
	SE	0.7	1.4	SE	0.9	1.2				
Group 2	Mean	35.7	39.2	Mean	34.9	44.2				
	SE	0.9	0.2	SE	0.5	1.0				
Group 3	Mean	35.2	41.1	Mean	35.2	44.1				
-	SE	1.0	1.2	SE	0.8	2.0				
Group 1, 2, 3	Mean	35.5	40.3	Mean	34.7	42.9				
• , ,	SE	0.4	0.6	SE	0.4	0.9				
Group 1, 2	Mean	35.6	39.9	Mean	34.5	42.3				
• /	SE	0.6	0.7	SE	0.5	1.0				
		150 5	e ENG	Saline dilutent - total vol	hima injected 1	2 ml				
Group 1	125-I Albumir			Saline dilutent - total vol						
Group 2	59-Fe and sali	-		Saline dilutent - total vol						
Group 3	59-Fe and EPG	injection on l	アレダ	Same difficult - total voi	шие шрески т					

Total Body to Peripheral Hematocrit Ratio

	FLI	GHT ANIMA	LS	GROUND CONTROL A							
	I.D.	L-7	R+0	I.D.	L-7	R+0					
Group 1	14	0.77	0.82	20	0.77	0.81					
	76	0.77	0.84	66	0.76	0.79					
	13	0.78	0.79	72	0.77	0.81					
	18	0.77	0.86	17	0.77	0.80					
	24	0.80	0.77	16	0.72	0.79					
Group 2	28	0.78	0.78	73	0.75	0.85					
0.00p =	29	0.82	0.82	74	0.73	0.88					
	58	0.77	0.80	54	0.82	0.90					
	3	0.78	0.81	59	0.78	0.95					
	83	0.85	0.80	62	0.79	0.82					
Group 3	27		0.89	2	0.73	0.80					
Group	30	0.76	0.79	10	0.75	0.84					
	51	0.78	0.80	53	0.74	0.98					
	68	0.78	0.81	57	0.78	0.78					
	81	0.78	0.89	61	0.81	0.85					
Group 1	Mean	0.78	0.81	Mean	0.76	0.80					
Group 1	SE	0.01	0.01	SE	0.01	0.01					
Group 2	Mean	0.80	0.80	Mean	0.77	0.88					
0.0up 2	SE	0.02	0.01	SE	0.02	0.02					
Group 3	Mean	0.77	0.84	Mean	0.76	0.85					
Group v	SE	0.01	0.02	SE	0.01	0.03					
Group 1, 2, 3	Mean	0.78	0.82	Mean	0.77	0.84					
Group 1, 2, 3	SE	0.01	0.01	SE	0.01	0.02					
Group 1, 2	Mean	0.79	0.81	Mean	0.77	0.84					
Group 1, 2	SE	0.01	0.01	SE	0.01	0.02					
Group 1 Group 2 Group 3	59-Fe and sali	n and 59-Fe inj ne injection on O injection on l	FD9	Saline dilutent - total vol Saline dilutent - total vol Saline dilutent - total vol	lume injected 1	.2 ml					
-		=									

IRON INCORPORATION INTO RED BLOOD CELLS

% 59-Fe in Total Red Blood Cell Mass

FLIGHT ANIMALS

GROUND CONTROL ANIMALS

Group 1 - 59-Fe Injection on FD6

	FD7	R+0		FD7	R+0
I.D.	24 Hours	9Days	I.D.	24 Hours	9Days
14	20.5	76.9	20	53.1	74.7
76	43.4	64.4	66	26.9	66.4
13	51.1	59.2	72	39.7	70.2
18	40.6	75.3	17	32.7	68.6
24	34.3	61.3	16	55.8	68.7
Mean	38.0	67.4	Mean	41.6	69.7
SE	5.1	3.6	SE	5.6	1.4

Group 2 - 59-Fe and Saline Injection on FD9

	FD10	R+0		FD10	R+0
I.D.	24 Hours	6 Days	I.D.	24 Hours	6 Days
28	42.2	69.7	73	36.4	74.1
29			74	26.3	69.2
58			54	30.9	74.8
3	43.1	72.6	59	24.7	77.7
83	44.8	72.7	62	27.6	69.2
Mean	43.4	71.7	Mean	29.2	73.0
SE	0.8	1.0	SE	2.1	1.7

Group 3 - 59-Fe and Erythropoietin Injection on FD9 (200 Units EPO)

I.D.	FD10 24 Hours	R+0 6 Days	I.D.	FD10 24 Hours	R+0 6 Days
27	48.9	77.7	2	35.7	66.4
30	50.5	62.0	10	52.0	75.2
51	49.7	64.2	53	36.9	99.8
68	43.9	70.6	57	50.5	70.5
81	53.0	84.7	61	46.8	84.9
Mean	49.2	71.8	Mean	44.4	79.4
SE	1.5	4.2	SE	3.4	6.0

51-Cr RED BLOOD SURVIVAL T1/2 in Days

	FLIGHT A	ANIMALS		GROUND CONT	ROL ANIMA	ALS
	I.D.	L-6	R+1	I.D.	L-6	R+1
		to	to		to	to
		R+0	R+8		R+0	R+8
Group 1	14	21.0	18.9	20	21.5	17.9
	76	21.0	17.7	66	17.2	18.7
	13	18.0	16.9	72	17.0	22.9
	18	21.5	20.3	17	23.2	18.0
	24	18.2	22.1	16	18.2	19.3
Group 2	28	18.4		73	17.6	
	29	18.5		74	18.1	
	58	23.8		54	17.8	
	3	20.6		59	20.9	
	83	17.6		62	16.9	
Group 3	27			2	20.1	
	30	23.0		10	19.4	
	51	18.0		53	19.5	
	68	22.0		57	17.6	
	81	23.5		61	17.7	
Group 1	Mean	19.9	19.2	Mean	19.4	19.4
	SE	0.8	0.9	SE	1.2	0.9
Group 2	Mean	19.8		Mean	18.3	
	SE	1.1		SE	0.7	
Group 3	Mean	21.6		Mean	18.9	
•	SE	1,2		SE	0.5	
Group 1, 2, 3	Mean	20.4		Mean	18.8	
• , ,	SE	0.6		SE	0.5	
Group 1, 2	Mean	19.9		Mean	18.8	
,	SE	0.6		SE	0.7	
Group 1	125-I Albumin	and 59-Fe inie	ection on FD6	Saline dilutent - total vol	ume injected 1	.2 ml
Group 2	59-Fe and salin	· ·		Saline dilutent - total vol	-	
Group 3	59-Fe and EPC	=		Saline dilutent - total vol		
F				-	3	

51-CR SPLEEN TO LIVER RATIO

	FLIG	HT ANIMALS	GROUND CONT	ROL ANIMALS
	I.D.	R+9	I.D.	R+9
Group 1	14	1.58	20	3.02
•	76	1.46	66	2.97
	13	2.84	72	2.63
	18	2.55	17	2.99
	24	2.73	16	1.98
	Mean	2.23		2.72
	SE	0.29		0.20
	RAT#	R+0	RAT #	R+0
Group 2	28	1.36	73	1.32
	29	1.34	74	1.32
	58	1.14	54	1.43
	3	1.93	59	1.34
	83	2.23	62	2.32
	Mean	1.60		1.54
	SE	0.21		0.20
Group 3	27		2	1.37
•	30	1.64	10	0.46
	51	2.40	53	0.56
	68	1.13	57	1.38
	81	2.04	61	1.17
	Mean	1.80	Mean	0.99
	SE	0.27	SE	0.20
Group 1 Group 2	125-I Albumin an 59-Fe and saline i	d 59-Fe injection on FD6 njection on FD9	Saline dilutent - total vo Saline dilutent - total vo	lume injected 1.2 ml
Group 3	59-Fe and EPO in		Saline dilutent - total vo	lume injected 1.2 ml

EOCHINOCYTE COUNT % of Total RBC Count

	Group 1, 2	Group 1, 2, 3	Group 3	Group 2	Group 1					Group 3				1	Group 2				ı	Group 1			
SE	Mean	Mean SE	Mean SE	Mean SE	Mean SE	81	%	51	30	27	83	ယ	58	29	28	24	18	13	76	14	I.D.		
0.34 Group 1 Group 2 Group 3	1.24	1.09 0.25	0.77 0.27	0.90 0.43	1.59 0.53	1.05	0.45	1.70	0.20	0.45	0.10	1.85	2.03	0.25	0.25	3.40	1.35	1.80	1.30	0.10	L-7		
0.36	1.72	2.17 0.44	3.08 1.04	1.60 0.45	1.84 0.62	6.40	4.32	2.70	1.40	0.58	0.58	1.65	3.10	1.90	0.75	4.03	1.75	2.10	0.76	0.55	L-6		
125-I A 59-Fe a 59-Fe a					1.75 0.41											0.80	3.10	1.05	1.75	2.05	FD6	FLIG	
0.02 125-I Albumin and 59-Fe injection on FD6 59-Fe and saline injection on FD9 59-Fe and EPO injection on FD9					4.04 1.38											1.05	2.90	5.24	8.85	2.18	FD7	FLIGHT ANIMALS	
and 59-F e injection injection			2.92 0.69	2.26 1.21		2.80	3.05	3.10	5.00	0.64	0.35	1.80	7.00	1.20	0.97						FD9	IMALS	
e injecti on on FI n on FD			1.58 0.48	2.01		2.45	2.81	0.85	1.55	0.22	0.65	2.49	3.80	2.27	0.85						FD10		
0.02 ion on F)9	0.12	0.14 0.02	0.16 0.05	0.15 0.04	0.10 0.03	0.30	0.00	0.13	0.25	0.13	0.20	0.15	0.05	0.25	0.10	0.04	0.15	0.05	0.05	0.20	R+0		%
D6					0.84 0.30											1.28	1.75	0.60	0.45	0.10	R+6		of Total
Sal Sal						61	57	33	10	2	62	59	5 2	74	73	16	17	72	86	20	I.D.		% of Total RBC Count
0.71 0.56 Saline dilutent - total volume injected 1.2 ml Saline dilutent - total volume injected 1.2 ml Saline dilutent - total volume injected 1.2 ml	1.04	1.46 0.46	1.17 0.27	0.61	2.66 1.39	1.00	1.35	0.95	2.00	0.55		0.35	0.80	0.55	0.75	1.75	1.55	0.60		6.75	L-7		nt
ent - to ent - to ent - to	3.06	2.91 0.45	2.66 0.64	2.35 0.74	4.25 1.05	4.70	3.30	2.70	1.20	1.40	0.50	4.60	1.80	2.60	2.25		3.05		3.35	6.35	L-6	GRO	
total volume injected 1.2 ml total volume injected 1.2 ml total volume injected 1.2 ml					3.81 2.13											1.00	1.20	2.50	2.10	12.25	FD6	GROUND CONTROL ANIMALS	
ne injec ne injec ne injec					5.61 1.62											1.45	7.45	3.90	4.40	10.85	FD7	NTRO	
led 1.2 n led 1.2 n led 1.2 n			1.15 0.25	2.15 1.14		0.50	1.20	1.20	0.85	2.00	0.65	2.20	0.70	6.55	0.66						FD9	L ANIM	
			2.30 0.87	2.18 0.84		1.20	2.20	1.70	0.75	5.65	0.35	4,95	1.15	3.20	1.25						FD10	[ALS	
0./1	2.99	2.80 0.46	2.45 0.45	3.08 0.93	2.92 1.15	1.20	2.50	2.70	1.90	3.93	0.70	4.20	2.55	4.85		0.85	0.85	2.55	3.25	7.11	R+0		
					1.29 0.35											0.70	0.55	1.05	2.45	1.70	R+6		

SERUM FERRITIN
ng/ml

		Group 3		Group 2		Group1														
	SE	Mean	SE	Mean	SE	Mean	SE	Mean.					136	134	128	125	124	117	Rat #	
Group 1 Group 2 Group 3							36	523					596	465	477	618	398	581	FD13	FLIGHT
125-I Al 59-Fe an 59-Fe ar									81	%	51	30	27	8 3	u	58	29	28	Rat #	FLIGHT ANIMALS
bumin and id saline it id EPO inj	32	552	52	512			41	532	451	611	692	465	539	487	394	463	798	420	R+0	LS
Group 1 125-I Albumin and 59-Fe injection Group 2 59-Fe and saline injection on FD9 Group 3 59-Fe and EPO injection on FD9														24	18	13	76	1	LD.	
125-I Albumin and 59-Fe injection on FD6 59-Fe and saline injection on FD9 59-Fe and EPO injection on FD9					46	371	46	371						474	307	241	358	475	R+9	
Saline Saline Saline									99	97	96	93	90	86	85	38	ಚ	31	I.D.	
Saline dilutent - Saline dilutent - Saline dilutent -							23	357	220	351	375	324	291	438	467	311	410	387	0-1	
																			I.D.	GROUND
total volume injected 1.2 ml total volume injected 1.2 ml total volume injected 1.2 ml							37	405					541	458	378	322	302	427	FD13	
cted 1.2 m cted 1.2 m cted 1.2 m									61	57	కు	10	2	62	59	2	74	73	I.D.	CONTROL ANIMALS
EEE	21	473	17	460			18	466	441	458	584	408	473	528	432	466	389	483	R+0	IMALS
														16	17	72	8	20	I.D.	
					٥,	314	50	314						363	298	222	358	328	R+9	

PLASMA FERRITIN ng per dl GROUND CONTROL ANIMALS

	I.D.	L-7	L-6	FD6	FD7	FD9	FD10	FD14	R+0	R+2	R+4	R+6
Group 1	20	278	196	884	707			669	454	258	267	369
•	66	309	323	781	1017			715	528	782	583	397
	72	312	632	958	1550			814	433	429	378	249
	17	322	319	1371	1281			729	408	*	442	361
	16	348	525	942	1235			734	668	550	843	473
Group 2	73	660	693			921	805		478			
	74	730				1065	748		448			
	54	717	512			933	784		549			
	59	475	244			1006	1121		417			
	62	548	546			1009	826		670			
Group 3	2	848	463				1598		498			
	10	404	580			794	730		462			
	53	542	587			1766	1613		595			
	57	446	378			1054	1135		463			
	61	395	486			1146	1637		552			
Group 1	Mean	314	399	987	1158			732	498	505	503	370
	SE	11	79	101	141			23	47	99	99	36
Group 2	Mean	626	499			987	857		512			
	SE	50	84			27	67		45			
Group 3	Mean	527	499			1190	1343		514			
-	SE	84	39			184	179		26			
Group 1,2,3	Mean	489	463						508			
	SE	46	39						22			
Group 1,2	Mean	543	473						520			
	SE	53	52						35			
Group 1 Group 2	125-I Al 59-Fe ar			Fe inject		D6					-	ed 1.2 ml
Group 3	59-Fe ar		-								-	red 1.2 ml

The elevated values for in-flight days may be due to an artifact of sample storage.

PLASMA FERRITIN ng per dl FLIGHT ANIMALS

	I.D.	L-7	L-6	FD6	FD7	FD9	FD10	FD14	R+0	R+2	R+4	R+6
Group 1	14	585	511	1070	1950			1330	483	376	748	375
_	76	491	459	1736	1328			1227	378	422	447	330
	13	604	672	825	1002			739	639	347	410	362
	18	585	664	795	574			654	796	635	565	417
	24	610	884	1242	1322			1359	670	624	452	522
Group 2	28	416	321			566	496		424			
	29	555	411			*	647		584			
	58	478	265			688	678		562			
	3	418	409			755	621		494			
	83	548	480			445	743		627			
Group 3	27	400	606			1066	531		446			
	30	585	463			581	487		395			
	51	308	462			1277	1696		479			
	68	334	146			1150	1106		434			
	81	712	185			1180	1011		454			
Group 1	Mean	575	638	1134	1235			1062	593	481	524	401
	SE	22	74	172	226			151	73	62	62	33
Group 2	Mean	483	377			614	637		538			
	SE	30	38			68	41		36			
Group 3	Mean	468	372			1051	966		442			
	SE	78	89			122	221		14			
Group 1,2,3	Mean	509	463						524			
	SE	29	50						31			
Group 1,2	Mean	516	491						594			
	SE	25	68						38			
Group 1	125-I Al	լիսյուր ։	and 59-1	Fe injecti	ion on F	D6	Salir	ne diluter	ut – tot	al volun	ne iniect	ed 1.2 ml
Group 2	59-Fe ar			•		- •						ed 1.2 ml
Group 3	59-Fe ar		-									ed 1.2 ml
Otoub 2	J7-1 6 81	ig Li O	шуссио	i on i D	•		Saill	io anuici		an (Olul)	ay mjeet	III

The elevated values for in-flight days may be due to an artifact of sample storage.

BODY MASS

(Group 1.2		Group 1,2,3		Group 3		Group 2		Group 1				1	Group 3					Group 2				,	Group1			
SE	Mean	SE	Mean	SE	Mean	SE	Mean	SE	Mean	81	68	51	30	27	83	w	\$	29	28	24	18	13	76	14	I.D.		
— ;	S.	_	95	<u></u>	96	2	95	<u></u>	95	91	95	99	95	99	97	90	94	99	92	93	96	96	95	94	L-24		
_	105	-	1 9	_	107		104	_	105	105	109	107	104	111	108	101	<u>1</u> 02	104	105	103	106	107	106	101	L-23		
_	115	,_	115	رب ن	116	-	115	_	116	107	119	119	112	123	118	111	115	115	116	112	114	119	116	116	L-22		
_	123	_	123	2	125	_	123	<u>,</u>	123	120	125	126	120	131	127	119	125	121	121	118	124	125	123	126	L-21		
_	133		134	w	136	2	134	2	132	130	141	139	128	140	139	130	136	132	133	128	131	131	136	136	L-20		
-	143	_	143	رب	145	2	143	} 4	142	137	151	150	139	149	149	139	146	136	145	138	141	141	143	147	L-19		
2	151	-	152	w	155	وبيا	152	2	151	147	160	157	148	161	157	147	159	144	151	148	149	147	151	159	L-18		
2	157	2	158	w	162	IJ	158	2	157	156	167	2	151	169	167	154	167	142	157	154	156	152	157	163	L-17		FL
2	165	2	167	ဃ	171	4	167	2	<u>7</u>	169	175	175	158	177	173	160	177	158	167	163	161	158	166	170	L-16	PRE-F	FLIGHT ANIMALS
2	173	2	173	+	180	4	173	į,	172	176	185	185	166	186	180	163	185	165	173	171	168	165	174	181	L-15	PRE-FLIGHT	ANIM
2	180	2	181	4	185	4	181	دره	179	181	189	188	172	193	186	176	194	170	180	179	174	171	180	188	L-14	T	ALS
2	188	2	190	4	194	.4	190	Û	187	190	200	198	180	200	193	184	203	179	189	186	181	181	188	198	L-13		
w	196	ę,	198	S	201	IJ	198	į,	194	201	203	207	183	210	203	193	215	183	193	193	190	186	197	204	L-12		
w	203	(J.	205	1 21	208	6	205	س	201	209	210	212	190	218	216	200	220	188	199	202	197	191	203	212	L-11		
w	206	Ç.	207	IJ	209	1 31	207	درو	204	210	211	217	191	216	211	201	225	192	207	204	201	195	204	216	L-10		
4	214	Ç.	216	U	218	6	216	4	212	221	216	226	199	228	221	209	237	198	215	213	206	202	214	223	L-9		
4	220	ŗ.	222	U	226	7	222	4	219	228	221	232	209	239	227	216	241	201	224	218	214	208	222	230	8 -7		
4	219	y.	222	v	227	7	222	U	217	230	222	235	209	237	225	211	243	203	227	211	211	206	228	228	L-7		
										233																	
4-	255	4	257	o	264	7	257	v	252	807	253	282	253	276	256	252	266	233	278 278	241	252	240	267	262	L-2		

BODY MASS
GROUND CONTROL ANIMALS

Group 1,2	Group 1,2,3	Group 3	Group 2	Group 1				,	Group 3				1	Group 2				,	Group1			
					61	57	ස :	10	2	62	59	54	74	73	16	17	72	66		I.D. FD1 FD2 FD3 FD4 FD5		
280 5	278 4	299 7	278 5	281 10	308	297	286	320	285	275	291	275	263	286	278	253	290	272		FD6		
291 6	291 6	321 7	291 8	291 10	319	325	301	344	313	280	298	313	269	295	297	282	286	265	327	FD7 FD8 FD9 FD10 FD11 FD12 FD13 FD14 R+0	DURING FLIGHT AND POST-FLIGHT	GROUND CONTROL ANIMALS
311 9	313 9	349 11	319 6	309 17	345	355	313	382	351	294	313	341	301	317		321					FLIGHT	IMALS
				316 16			Group 3	Group 2	Group 1						335							
				315 16	Saline										332	326	297	265	358			
					Saline dilutent -		59-Fe and EPO injection on FD9	59-Fe and saline injection on FD9	125-I Albumin and 59-Fe injection on FD6											R+3 I		
				320 17	- 1		nd EPC	nd salii	lbumin						330					-		
				325 18	al volu) inject	ne injec	and 59						348 3							
				335 16	total volume injected 1.2 ml		ion on	ction of	9-Fe in						352 3							
				335 3 16	cted 1		FD9	1 FD9	jection						355 3							
		,		347 17	.2 ml				on FD						371 3							
				339 16				_	خ 						361	358	318	288	373	R+9		

Body Mass

BODY MASS GROUND CONTROL ANIMALS

Group 1,2	Group 1,2,3	Group 3	Group 2	Group 1			Group 3	Group 2		Group1
Mean SE	Mean SE	Mean SE	Mean SE	Mean SE	57 61	10 53	59 62 2	2 2 3 2	72 17	I.D. 20
94	93 1	93 2	93 1	96 2	93 93	90	95 91 100	93 94	102	L-24 93
106 1	106 1	105 2	106 2	107 2	102	109	114 101 110	110 105 106 102	103	L-23
116 1	115 1	117 2	115 2	117 2	116 116	119 111	122 109 120	120 116 113 115	118	L-22
124 1	123 1	126 1	123 2	125 1	124 129	126 121	130 115 129	127 122 122 124	125 125	L-21
134 2	132 1	135 2	132 3	136 2	135 135	138 129	142 126 139	138 130 128 134	136 138	L-20 129
145 1	144 2	145 3	3	146 1	145 145	149 136	152 136 151	149 143 139 147	145 146	L-19 142
153 2	151 2	155 2	151 3	156 1	155 153	159 148	161 143 160	159 146 147 157	155 157	GR L-18 152
161 2	159 2	163 3	159 3	162 2	163 161	164 154	169 153 171	154 155 156 164	161	OUND L-17 158
171 2	170 2	171 2	170 3	172 2	172 170	174 163	179 163 177	176 168 163 174	170 176	
179 2	177 2	181 3	177 3	180 2	181 181	187 169	187 171 189	185 176 171 182	177	TROL TLIGH L-15 175
186 3	183 2	189 3	183 4	188 2	187 189	194 178	195 178 197	192 172 179 192	186	ANIA TT L-14 183
194 2	191 2	197 4	191 3	197 2	200 198	201 182	199 187 203	201 188 184 196	191 195 204	1ALS L-13 193
203 2	202 3	204 4	202 4	204 3	204 207	207 190	209 194 214	208 198 195 211	199	L-12 201
210 2	206 3	212 5	206 3	214 3	215 213	215 193	212 201 222	203 203 200 214	214 214 221	L-11 210
210 3	209 3	213 4	209 4	210 6	214 216	220 196	217 202 220	217 205 202 219	189 226	L-10 212
219 3	218 3	224 4	218 3	220 7	22 4 226	232 207	223212229	227 215 212 226	198 237	L-9 221
227 3	227 3	232 4	227 3	228 6	232 234	239 215	234 220 238	223 223 221 235	208	L.& 233
228 3	229 2	232 4	229 2	227 5	233 236	239 215	231 230 234	228 228 222 233	209	L-7 231
231 4	229 3	239 4	229 4	233 8	237 243	247 223	239 221 244	240 240	208 250	L-6 242

BODY MASS FLIGHT ANIMALS

Group 1,2	Group 1,2,3	Group 3	Group 2	Group 1					Group 3					Group 2					Group1		
-					81	68	51	30	27	83	3	58	29	28	24	18	13	76	14	I.D. FD1 FD2 FD3 FD4 FD5	
300	294 6	316 8	294 11	307 7	323	294	327	300	337	276	286	318	270	320	305	297	290	326	316	FD6 FD7 FD8 FD9	DURI
321 8	317 6	340	317 15	326 9	345	319	349	328	356	297	308	348	276		330	320	298	328	353	FD7 FD8 FD9 FD10 FD11 FD12 FD13 FD14 R+0	DURING FLIGHT AND POST-FLIGHT
333 9	329 6	356 7	339 16	337 7	359	333	367	347	373	316	314	365	281	371	347	330	313	348	346		7
				330 6	100		Group 3	Group 2	Group 1						333			338	344	R+1	
				323 6	saline o										324	323	302	333	335		
				. _{(M}	Saline dilutent - total volume injected 1.2 ml		59-Fe and EPO injection on FD9	59-Fe and saline injection on FD9	125-I Albumin and 59-Fe injection on FD6						331	328	304	337	334	R+3 R+4	
				327 327 6 6	total		Odal	lsaline	umin a												
				27 331 5 4	volum		injectio	injecti	nd 59-						5 333						
				11 328 1 5	e injec		on F	on on	Fe inje						3 322					-	
					ted 1.2		D9	FD9	ction c						2 343						
				336 334 5 4					m FD6						3 342		1 320				

 Mean SEM

Ē

'n

w

BODY MASS (grams)

TRANSPORTATION CONTROLS For Growth Rate - PRE-FLIGHT

ed At KSC During the Pre-flight Period and Flown From KSC to PRF on FD1

SEM	Mean	98	2	91	87	6	≴	45	ŧ	±	37	I.D.	
_	96	96	97	8	87	95	97	94	%	100	-	L-24	
_	107	109	108	108	104	103	26	108	106	108	107	L-23	
_	117	118	115	116	113	116	118	125	116	117	118	L-22	
,	124	126	122	122	123	125	126	121	124	126	127	L-21 1	Ship
_	134	137	131	137	131	131	139	131	134	133	134	L-20 J	ped To
	142	145	142	144	139	142	150	137	142	138	144	L-19 1	And I
_	151	155	152		_		_		151	149	151	L-18 I	Shipped To And Housed At
2	158	163 173 180 193 194 204 212 210 220 225 230 238 241 25	158	160	152	157	167	153	159	151	159	L-17]	d At K
2	167	173	169	167	160	169	178	158	170	158	165	[-16]	SC Du
2	174	180	175	174	166	176	190	168	177	163	175	L-15 I	ırıng ti
Ç.	182	193	183	179	175	183	197	176	186	170	181	_14 1	ne Fre
2	189	194	190	185	183	191	205	182	191	179	191	-13 I	-rugnt
w	197	204	198	194	191	198	212	188	202	185	194	J-12 I	rerio
w	202	212	207	197	196	202	219	194	207	189	200	11 I	I DUR I
w	205	210	206	199	193	210	227	198	208	193	202	-10	11/4/01
دما	215	220	215	210	203	220	238	206	131	202	210	L-9	LIOIN
Ų	221	225	223	216	207	131	246	215	227	209	217	₹ 	DOC 1
4	223	230	224	217	209	227	253	216	229	211	218	L-7	T NE
4	233	238	238	230	217	239	263	226	239	219	235	۲	011
U	239	241	243	233	221	245	274	233	244	224	233	7	1
v	727	253	257	243	4	00	7	1) ∞		1 0	1	
v	700	261	_								2 2		
0	002	2/1		261									
0		276		265									

I.D. 101 102	L-24 100 85	L-23 114 101	L-22 126 111	L-21 134 121	L-20 143 125	L-19 150 135		Shipped To L-17 L-16 169 176 151 159 176	Shipped To And Housed At PRF Throughout The Study L-17 L-16 L-15 L-14 L-13 L-12 L-11 L-10 L-9 169 176 183 188 196 203 210 221 226 151 159 167 175 184 189 195 205 212 166 175 182 190 199 205 213 223 228	And Ho L-15 183 167 182	oused . L-14 188 175	At PRI L-13 196 184 199	F Thre L-12 203 189 205	At PRF Throughout The L-13 L-12 L-11 L-10 196 203 210 221 184 189 195 205 199 205 213 223	it The L-10 221 205 223	Study L-9 226 212 228	L-8 231 217 217	L-7 242 226 226	L-6 252 233 251	L- S 256 239 258	L-4 267 247 264	L-3 279 257 282	4L-2 283 261 281
101	100	114	126	134	143	150	154	169	176	183	188	196	203	210	131	136	231	242	252	256	267		279
102	85	101	111	121	125	135	144	151	159	167	175	184	189	195	205	212	217	226	233	239	247	Ņ	57
103	94	109	120	129	138	148	158	166	175	182	190	199	205	213	223	228	236	244	251	258	264	12	ï
<u> </u>	95	108	118	127	135	146	153	162	170	178	188	189	205	212	222	230	235	248	255	257	268	12	ຜ
9	102	116	128	138	152	159	172	180	188	200	206	216	223	232	244	249	260	273	278	285	294	30	œ
106	23	<u>1</u> 09	120	129	136	148	154	163	172	179	185	193	200	207	219	226	233	246	253	257	267	27	×
107	13	<u>8</u>	118	127	137	145	154	161	168	174	183	189	195	205	212	222	227	238	245	251	259	27	W
2	8	S S	114	123	132	143	151	159	<u>7</u>	174	180	193	196	204	213	218	135	234	240	245	250	2	Z .
,	ć	,	1				ı	•	}	,		5	3	3	9	3	3	ر د) / /	3	2	275	አ

SEM

4

4

4

38<u>1</u>

S

408

Vı

BODY MASS (grams)

TRANSPORTATION CONTROLS For Growth Rate - DURING FLIGHT AND POST-FLIGHT

Flown From KSC To PRF On FD1 And Housed At PRF For Remainder Of The Study

SEM	Mean	98	91	91	87	6 t	≴	4	±	±	37	I.D.	
6	285	283	292	273	261	294	328	281	291	268	276	FDI	
6	270	267	273	261	250	281	315	266	274	255	262	FD2	
6	287	289	288	279	261	300	335	281	293	270	278	FD3	
7	295	296	298	282	269	311	344	291	298	279	287	ED4	
7	304	307	305	293	277	320	354	301	300	286	296	FD5	LYON
7	307	306	310	297	278	326	359	301	305	289	296	FD6	FIOWH FIGHT MOC 101 MF OH FD1 AND MOUSED ALL ME FOL MENTALLE
7	314	313	315	305	285	333	366	310	314	297	303	FD7	
7	322	323	322	314	291	340	373	317	320	309	309	FD8	101
7	328	327	331	320	297	349	381	326	326	310	310	FD9 F	
∞	332	334	332	325	298	352	387	330	332	312	315	FD10 F	FDI
œ	337	338	336	329	304	361	392	336	336	317	318	FD11 F	Thur
∞	341	340	341	330	306	364	398	343	339	321	324	FD12 F	TOUSCO
∞	345	347	347	340	312	368	403	346	343	324	324	FD13 F	1 1 1 1
œ	348	350	349	342	316	377	400	348	343	326	326	FD14 I	VI. T.O.
∞	354	360	350	348	321	379	413	357	351	331	332	R+0 F	INCLIN
∞	355	362	354	348	323	380	412	355	354	334	332	R+1 F	
∞	358	364	361										21
œ	364	369		357				367			336	7+3 F	Tile Study
9	369	375	369	363	336	399		370		344		R+4 F	,
∞	372	380	370					373			344		
oo	376	382						376				R+6 R	
9		388	383		352			382	376	358	_		
9	383	387	386		352				378			R+8 F	
9	389	396	387	386	356	417	450	395	384	366	356	+ 9	

112 310113 303114 304				111 312	110 305	109 302	108 279	107 293	106 299	105 330	104 301	103 296	102 276	101 302	FD1		SEM 6	Mean 285	98 283	94 292		87 261			46 281
	311	309	315	313	306	308	290	298	307	338	306	302	282	309	FD2		6	270	267	273	261	250	281	315	266
	320	323	333	330	320	319	300	310	320	350	320	310	293	329	FD3		6	287	289	288	279	261	300	335	281
	339	326	336	333	329	325	306	320	327	364	324	318	302	337	FD4		7	295	296	298	282	269	311	344	291
	348	331	343	340	335	334	311	322	337	374	333	322	306	341	FD5		7	304	307	305	293	277	320	354	301
	344	333	345	337	337	332	318	326	329	373	333	326	309	338	FD6		7	307	306	310	297	278	326	359	301
	359	339	350	346	344	339	322	333	345	378	343	329	316	348	FD7	S	7	314	313	315	305	285	333	366	310
	359	345	357	353	350	342	326	339	349	384	346	334	318	355	FD8	hipped	7	322	323	322	314	291	340	373	317
	370	351	363	355	350	347	329	342	348	386	353	341	323	358	FD9	To	7	328	327	331	320	297	349	381	326
	371	350	366	357	357	352	334	344	351	388	356	343	332	363	FD10	And Housed	∞	332	334	332			352	387	330
	376	355	373	366	355	351	339	351	358	395	360	344	331	369	FD11		œ	337	338	336	329	304	361	392	336
	376	376	378	366	356	353	341	350	357	401	360	345	336	374	FD12 1	At PRF Throughout The	∞	341	340	341	330	306	364	398	343 3
	384	364	383	374	365	359	346	353	367	397	366	349	341	379	FD13 1	Thro	∞	345	347	347	340	312	368	403	346
	389	361	383	379	368	365	350	359	368	404	369	353	346	387	FD14	ughou	œ	348	350	349	342	316			348
	394	364	390	385	379	368	355	363	377	49	373	358	353	391	R+J		∞	354	360	350	348	321	379	413	357
	391	364	389	381	374	363	350	365				357	354	390	R+1	Study	œ	355	362	354	348	323	380	412	355
	393	364				369											∞	358	364	361	350	325	382	410	361
	402	370	8	387		372						359	359				œ	364	369	369	357	330	391	417	367
	40	372	403	393	386	378							361				9	369	375	369	363	336	399	426	370
	414	378	405	402	392	381	368	384	386	435	385	369			_		œ	372	380	370	367	342	385	433	373
						384											∞	376	382	377	371	346	402	433	376
	425					393											9	382	388	383	377	352	4 9	4	382
	428					393					397	380	378	423	R+8		9	383	387	386	378	352	413	442	386
;	433	395	424	416	410	401	384	398	403	44	399	388	384	428	R+9		9	389	396	387	386	356	417	450	395

BODY MASS (grams)

TRANSPORTATION CONTROLS For Growth Rate - PRE-FLIGHT Shinned To And Housed At KSC Throughout The Study

SEM	Mean	95	92	89	50	45	43	39	34	32	LD.	
_	97	100	93	98	101	%	95	98	91	98	L-24	
}	109	112	106	116	110	109	106	109	106	108	L-23	
,	117	117	112	119	122	118	113	122	116	118	L-22	
_	126	125	124	133	129	124	122	131	124	124	L-21	
_	136	136	137	140	141	137	129	138	134	135	L-20	
2	147	148	148	151	154	145	139	151	140	144	L-19	
2	156	156	155	160	2	154	147	161	153	150	L-18	
_	<u>ই</u>	165	165	167	169	162	154	167	165	162	L-17	Shippe
2	173	174	174	178	179	168	161	175	172	173	L-16	d 10 A
2	181	180	184	183	188	178	168	186	184	179	L-15	TH DUY
2	189	188	193	195	195	183	176	194	191	187	L-14	ousea .
2	197	196	199	201	203	191	185	201	204	194	L-13	AL NO
2	203	201	200	212	209	193	191	208	207	204	L-12	C Inn
2	211	210	214	215	215	205	196	215	219	209	L-11	ougue
2	212	212	217	218	217	205	198	216	214	213	L-10	Shipped To And Housed At NSC Throughout The Study
w	221	219	229	227	224	215	203	225	226	224	L-9	Study
w	228	227	236	234	231	220	208	231	233	229	8	
Ć.	231	233	240	242	234	220	209	236	234	232	L-7	
نبا	239	240	247	242	241	232	218	245	243	244	P-T	
Ų.	245	245	256	249	245	236	223	247	252	250	L-S	
(A	258	254	269	264	261	247	237	262	268	262	1	
ŧ	266	263	277	272	270	255	241	275	272	271	L3	
4	27.4	2/0	288	279	279	264	248	2/9	285	277	L-2	1
1	279	7//	294	287	282	27/0	50	287	286	279	1	

FLIGHT BACK-UPS (Shipped To and Housed At KSC Throughout The Study)

70	> l																I		
SEM	Mean	82	80	77	75	71	67	2	ß	26	23	19	12	6		1	D. 1		
-	95	33	94	8	91	8	8	8	94	93	8	97	8	93	92	2	-24		
_	107	107	<u>1</u>	108	101	111	113	107	8	105	110	108	111	102	18	105	L-23	Thes	
	116	114	114	120	112	120	117	114	120	114	121	118	119	113	109	116	L-22	e Anin	
—	123	123	122	124	121	127	126	123	126	112	128	124	129	122	117	125	L-21	nals H	
,	135	133	131	138	129	140	137	133	140	132	137	133	139	136	126	133	L-20	ad Th	
,	145	144	143	147	139	148	146	143	151	144	151	146	151	148	136	144	L-19	e Same	r Liv.
-	153	151	150	155	147	153	153	151	159	150	159	154	161	158	146	150	L-18	e Pre-f	H1 b/
_	160	159	160	159	155	157	160	157	163	157	166	161	168	167	148	158	L-17	These Animals Had The Same Pre-flight Schedule for Injections and Blood Sampeles	1CD-C
2	169	172	170	170	161	169		162	175	163	175	170	177	178	158	165	L-16	chedu	ro(o
2	177	178	178	177	169	178	174	168	184	171	186	177	186	187	166	173	L-15	e for J	mpped
2	183	186	185	186	173	180	183	177	187	175	193	185	194	196	172	178	L-14	Injection	FLIGHT DACK-OFS (Shipped to and troased at two time organizations of the control
2	191	193	195	188	183	188	190	183	194	182	201	192	202	205	182	185	L-13	ons an	וח זיסנ
2	197	202	201	197	191	195	198	182	198	186	210	200	207	213	185	194	L-12	d Bloo	1960 VX
2	205	211	207	202	196	200	206	194	203	195	217	209	217	221	197	203		d Sam	, , ,
2	207	211	208	207	202	205	204	195	208	197	219	210	218	220	198	201	L-10	peles a	
2	215	221	216	215	211	209	214	203	212	202	230	217	228	230	206	209			0
2	222	227	223	219	216	218	221	210	221	208	236	225	237	239	216	217	\$	flight:	
2	222	229	225	220	218	222	224	212	219	208	232	220	234	235	212	217	L-7	and G	, (200
2	229	235	227	22.3	224	224	231	216	229	217	235	227	244	246	225	225	L-6	gunon	
																	r S	- junur	
																	4	. An	<u>.</u>
																	L-3	Signil	1
																	5 L-2		
																	L-1	•	

TRANSPORTATION CONTROLS For Growth Rate - DURING FLIGHT AND POST-FLIGHT Shipped To And Housed At KSC Throughout The Study **BODY MASS (grams)**

SEM	Mean	95	92	89	50	4 5	43	39	34	32	I.D.	
4	n 291	286	303	295	295	283	262	304	298	289	FD1	
S	295	288	311	300	301	285	265	305	302	297	FD2	
5 1	302	297	318	308	310	294	270	308	311	299	FD3	
S	307	308	327	314	317	299	276	317	301	308	FD4	
6	316	312	335	326	319	307	277	325	322	318	FD5	
6	321	316	345	330	326	310	283	332	328	322	FD6	
6	327	320	350	337	335	317	286	339	336	325	FD7	2
6	333	328	354	344	336	324	295	345	341	333	FD8	omplee to the stoogen in and and
6	339	333	366	348	345	328	296	348	347	337	FD9	T A C A
7	343	336	375	353	342	334	300	354	353	338	FD10	
7	349	342	377	360	354	340	301	359	358	349	FD11	900000
7	354	348	385	365	357	343	308	359	365	352	FD12	3
7	358	353	389	368	361	350	315	362	364	356	FD13	
7	363	357	395	373	361	356	321	372	377	357	FD14	9
7	366	361	398	374	361	357	322	373	379	365	R+0	
7	369	36 8						378			R+1	
7	376	371	410 413	389	370	369	333	386	388	372	R+2	
œ	378	375	413	393	376	371	329	385	390	374	R+3	
œ	385	380	420	49	377	377	335	392	401	378	7+4	
∞	386	381	419	401	379	379	338	392	8	379	R+5	
90	390	384	424	406	378	385	340	398	411	382	R+6	
∞	392	388	426	406	383	384	345	402	414	382	R+7	
œ			425									
٠	394	386	434	408	381	390	346	401	422	382	R+9	
		-										

FLIGHT BACK-UPS (Shipped To and Housed At KSC Throughout The Study)

,				•	· <i>5</i> 1	_	7	T,	<u>ن</u>	26	نت	9	2	5	91	_	D. F	
•																	FD1 I	
	274	283	271	272	257	273	276	250	272	266	286	279	297	291	259	276	FD2	
•	281	294	278	277	263	278	282	260	277	276	290	285	304	296	266	282	FD3	
•	289	302	290	283	271	283	290	266	288	283	299	295	309	309	270	292	FD4	A
1	295	307	295	288	276	291	295	271	296	291	305	300	315	312	276	300	FD5	fter th
	302	313	306	295	280	297	302	278	301	301	315	310	325	316	282	305	FD6	е Pre
•	308	324	306	299	288	304	312	286	307	304	322	314	330	322	287	309	FD7	flight
•	313	332	313	302	290	307	315	292	312	311	326	321	337	326	293	319	FD8	Perio
-	318	336	320	308	295	306	321	293	317	317	333	325	339	332	302	322	FD9	d Bod
•	323	342	323	312	299	312	330	299	322	325	340	329	347	339	305	327	FD10	y Mas
-	329	346	330	318	305	318	337	309	328	331	340	336	351	341	309	333	FD11	After the Pre-flight Period Body Mass Was the Only Measurement Made
-	335	357	333	323	310	325	342	313	330	337	351	344	356	350	319	342	FD12	the O
_	339	360	340	325	314	328	345	315	336	340	354	347	360	352	324	345	FD13	nly Mi
-	343	366	343	328	317	328	350	321	340	349	360	352	365	354	326	345	FD14	easure
_	349	371	346	333	324	338	357	329	347	354	363	358	370	360	332	353	R+O	ment
Λ	353	376	348	338	316	339	360	331	347	359	369	363	376	370	340	357	R+1	Made
Δ.	360	385	358	346	337	345	370	338	351	366	373	372	383	369	344	366	R+2	Un Ir
<u>-</u>	361	390	361	344	337	345	374	340	350	366	373	376	383	368	344	366	R+3	lese A
<u>-</u>	36 <u>2</u>	387	361	349	341	346	380	341	353	369	380	379	388	373	344	368	R+4	On These Animais
4	368	393	364	353	346	352	382	343	355	372	380	384	391	373	351	374	R+5	•
4	370	396	364	357	349	356	382	348	358	376	383	386	393	376	351	375	R+6	1
£-	375	405	369	361	354	363	385	354	360	378	386	389	397	385	354	379	R+7	[]
L.	374	402	368	362	352	362	392	350	363	378	391	392	395	378	352	379	X+X	! }
- -	378	40/					391						8	385	359	385	R+9	!

BODY MASS (grams) PRE-FLIGHT

L+0 CONTROLS (KSC)

Not part of Archar do to

SEM	Mean	99	97	96	93	90	86	85	38	33	31	I.D.
	93	93	91	8	%	8	89	89	95	97	91	L-24
_	106	107	103	104	111	106	105	105	<u>1</u> 2	111	101	L-23
_	115	113	108	115	121	115	116	113	117	120	114	L-22
_	123	121	115	125	129	125	123	116	125	126	126	L-21
2	134	137	126	136	143	136	133	127	134	136	136	L-20
2	143	146	137	145	150	147	140	133	138	152	143	L-19
w	153	155	140	155	158	158	144	141	146	175	155	L-18
2	158	166	146	161	166	2	150	150	151	166	159	L-17
w	165	172	155	171	182	175	159	155	160	152	172	L-16
4	172	181	162	181	185	184	168	160	168	179	154	L-15
د ب	182	193	170	191	194	190	170	171	174	182	184	L-14
	191	202	177	197	204	202	180	177	181	195	194	L-13
4	199	209	186	207	219	206	187	185	186	203	203	L-12
4	204	216	191	218	220	191	191	191	193	218	209	L-11
	203	216	192	214	224	185	187	191	196	214	213	L-10
Un	214	227	199	221	237	213	197	198	202	227	221	L-9
Ŋ	222	234	205	229	244	227	202	206	210	234	230	8.1
UI	223	236	205	233	248	229	201	207	208	236	231	L-7
⊅	237	245	215	244	262	246	211	222	222	249	253	6 -1
6	240	248	218	246	267	247	212	227	223	257	249	L-5
2	252	266	227	256	274	264	221	239	236	270	262	14
7	262	273	234	263	305	269	227	247	246	282	270	L-3
7	268	280	237	269	294	280	234	257	255	290	283	L-2
	274		241									
7	284	301	252	282	311	291	243	275	273	306	301	L-0

4

L-1					275	536	279		R+9		334		339	389	408	394	378	
T-7	257	252			266	284	274		R+8		336		347	383	4 04	392	374	
L-3					260	281	266		R+7		328		335	382	402	392	375	
<u>1</u>					252	267	258		R+6		331		335	376	394	330	370	
ĽŞ					239	260	245		R+5		327		325	372	392	386	368	
9	229	224	229	233	233	254	239	229	R+4		327		320	369	386	385	364	
L-7	222	217	229	227	223	247	231	222	R+3					364	381	378	361	
F-Q	222	219	22 <i>7</i>	228	221	237	228	222	R+2		323		315	358	375	376	360	
6-J	216	212	218	220	215	228	221	215	R+1		330		316	355	375	369	353	
L-10	207	202	209	210	205	222	212	207	R +0	329	337	313	309	354	376	366	349	
L-11	205	201	206	214	202	211	211	205	FD14					348	371	363	343	
L-12	198	194	202	204	197	198	203	197	FD13					345	367	358	339	
L-13	190	187	191	197	189	197	197	191	FD12					341	363	354	335	
L-14	181	179	183	188	182	188	189	183	FD11					337	360	349	329	
L-15	173	172	177	180	174	180	181	177	FD10	317	326	291	291	332	355	343	323	
L-16	167	164	170	172	167	172	173	169	FD9					328	352	339	318	
L-17	158	157	159	162	158	164	2 4	160	FD8					322	348	333	313	
L-18	152	151	151	156	151	155	156	153	FD7					314	343	327	308	
L-19	143	142	144	146	142	146	147	145	FD6	294	307	278	281	307	335	321	302	
L-20	134	132	132	136	134	137	136	135	FD5					304	335	316	295	
L-21	123	123	123	125	124	128	126	123	FD4					295	328	307	289	
L-22	115	116	1115	1117	117	119	1117	116	FD3					287	321	302	281	
L-23	104	105	106	107	107	108	109	107	FD2					270	308	295	274	
L-24	95	95	83	8	8	23	24	95	FD1					285	302	291		
roup	A	В	ပ	Q	H	<u> </u>	G	H	roup	A	В	၁	Ω	田	Ŧ	G	Н	

Flight Animals (N =15) Groups 1, 2 and 3

Flight Animals (N = 5) Group1

Ground Control Animals (N = 15) Groups 1, 2 and 3

Ground Control Animals (N = 5) Group1 **8**00

Transportation Control Animals (N =10) Shipped to and Housed at KSC Pre-flight, Flown From KSC to PRF on FD1 and Housed at PRF for Remainder of the Study

Transportation Control Animals (N =15) Shipped to and Housed at PRF Throughout the Study

Transportation Control Animals (N =9) Shipped to and Housed at KSC Throughout the Study

Flight Back-up Animals (N = 15) Shipped to and Housed at KSC Throughout the Study

Same Pre-flight Schedule for Injections and Blood Samples as the Flight and Ground Control animals